Assessment of the antibacterial activity of chestnut (Castanea sativa) and cloves (Syzygium aromaticum) herbal extracts as an alternative to antibiotics use during post-hatching period of chicks

Rafał Kędzia¹,², Marcin W. Lis*¹

¹ Veterinary Clinic “AVI-MEDVET”, ul Lelewela 16, 43-300, Bielsko-Biała, Poland
² Department of Zoology and Animal Welfare, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Kraków, Poland

Article history
Received: 12 December 2020
Received in revised form: 12 January 2021
Accepted: 14 January 2021
Available online: 16 January 2021

Abstract
Bacterial infections of newly hatched chicks are the most common cause of their death in the initial period of rearing. These infections are always treated with antibiotics. The aim of the study was to investigate the antimicrobial activity of herbal extracts of chestnut (Castanea sativa) and clove (Syzygium aromaticum) against bacterial infections i.e. Escherichia coli, Enterococcus faecalis, Staphylococcus aureus, Klebsiella pneumoniae in comparison to antibiotics. The results of the microbiological analyses showed that the Castanea sativa and Syzygium aromaticum extracts had a slighter antibacterial activity in comparison to antibiotics. The diameter of zone inhibition of the culture’s growth of gram-negative bacteria (i.e. Escherichia coli and Klebsiella pneumoniae) and gram-positive bacteria (i.e. Staphylococcus aureus and Enterococcus faecalis) was 6–13 mm for these extracts in comparison to 15–30 mm for antibiotics. However, some bacterial strains presented full resistance to the selected antibiotics, e.g., wild strains of Enterobacteriaceae to amoxicillin or Staphylococcus aureus and Enterococcus faecalis to florfenicol, colistin, and doxycycline.

In the second experiment, the effect of the herbal extract mixture added into drinking water on the growth and mortality of chicken broiler during the first rearing week was investigated. There was found that the use of herbal extracts improved the chickens’ body weight (157.4 g; P ≤ 0.008) and decreased mortality rate (2.4%) compared to the control group (144.1 g and 3.9%, respectively) but not to the group treated with antibiotic (161.5 and 0.6% respectively; P ≤ 0.009).

In summary, the use of herbal extracts as a nutritional supplement for poultry seems to have a positive effect on weight gain of young birds, and to some extent reduce mortality in the first week of rearing.

Keywords: antibiotic resistance, herbal extracts, broiler chicken, mortality

Introduction

The quality and health of day-old chicks are crucial factors influencing the course of rearing and successful poultry production. Therefore, the high environmental and hygienic standards in parental flock and hatchery but also during chicks’ transportation and brooding should be strictly required. Nevertheless, in poultry industry, inflammation of the umbilicus (omphalitis) and/or yolk sac infection remains the main cause of mortality for hatchlings during the first week of life [1, 2].

The etiological factor of these diseases are primarily bacteria Escherichia coli, but also Enterococcus spp., Staphylococcus spp., Pseudomonas spp., Proteus spp., Klebsiella spp., but microbiological picture and domination of particular species of microbes may be varied in individual cases [3–5]. This high microbiological diversity leads to omphalitis and yolk sac infections being very difficult to treat and usually require involving antibiotics and/or chemotherapeutics [2, 5].

The widespread, sometimes indiscriminate, use of these drugs results in the selection of bacteria which are inherently resistant. Not only may these resistant bacteria become the predominant species in a population but they may also transfer...
genetic material to susceptible bacteria which then acquire resistance. The spread of antibiotic resistances through the food chain remains a relevant question for both scientists and public health operators [6–8]. Some poultry producers remain in favour of preventive treatment of setted chicks, especially since antibiotics and chemotherapeutics administration improves the growth and feed efficiency and decreases variability of flock [9]. Such proceeding should be unjustified because the prevalence of antibiotics in the food chain results in microbes’ resistance to antibacterial drugs [6, 8]. In this situation, it seems necessary to develop an alternative therapy using, for example, phytobiotics [7, 10].

Herbs are still an underappreciated potential source of anti-infective natural products in modern human and veterinary medicine. However, mankind has a long and rich history of medical traditions involving herbs in various traditional pharmacopoeia [11]. The abundance and diversity of biologically active compounds found in medicinal herbs affects their broad spectrum of antibacterial activity [12].

Some examples of herbs commonly used in traditional medicine and cuisine are: European chestnut (Castanea sativa) [13] and Cloves Java plum (jamobolan, Syzygium aromaticum) [11, 14]. The extracts of different parts (leaves, seeds, buds) of these herbs demonstrate i.a. antioxidant, digestive, antihyperglycaemic, antihelminthic and antibacterial and antiviral effect. These properties are due to different chemical constituents, in particular, alkaloids, flavonoids, phenolics and polyphenolics (tannins) [11, 13–15]. Tannins and terpenes contained in these herbs exhibit a wide antimicrobial spectrum, including acting against pathogenic fungi, gram-positive (Staphylococcus aureus) and gram-negative bacteria (Escherichia coli, Proteus mirabilis, Klebsiella pneumoniae) [16–19].

The various herbal extracts and essential oils as diet supplements and/or a replacement for antibiotics are increasingly used in the industry of poultry production [20–22]. The extracts of Castanea sativa and Syzygium aromaticum were also tested to improve eggs [23] and carcass quality [13, 24–25] and broiler gain [25].

Therefore, it was interesting to study the antimicrobial activity against most common infections in poultry of chestnut (Castanea sativa) and cloves (Syzygium aromaticum) extracts and their effect on mortality and body weight in the first week of chick rearing.

Material and Methods

Chemicals

The Castanea sativa (45%) and Syzygium aromaticum (37%) water extracts and their mixtures used in experiments were prepared by dr. Rafał Korzewski (Centaur Ltd, Poland).

Experiment 1. The in vitro test antimicrobial activity of Castanea sativa and Syzygium aromaticum water extracts

The antimicrobial test of Castanea sativa and Syzygium aromaticum extracts was performed according to the recommendations of the National Committee for Clinical Laboratory Standards (2013) and the guidelines of the Clinical and Laboratory Standard Institute (CLSI, M100-S23, 2013). American Type Collection Culture (ATCC) reference strains and the wild strains bacteria from collection of the Veterinary Clinic “AVI-MEDVET”, Bielsko-Biała, Poland were used, i.e.: 1) gram-negative Enterobacteriaceae i.e.: Escherichia coli (one reference strain ATCC 25922 and two wild strains isolated from 3-day-old and 23-day-old chicken broilers) and Klebsiella pneumoniae (wild strain isolated from 3-day-old chicken broilers); and 2) gram positive bacteria: Staphylococcus aureus (ATCC 25923) and Enterococcus faecalis (ATCC 29212). All the strains were preserved under deep freeze before the experiments. The inoculations for the experiments were harvested from a few of the same colonies of each species, originating from fresh overnight cultures.

The tested bacteria cultures were cultivated on plates with medium Columbia agar + 5% sheep blood (Graso Biotech Ltd, Poland) for 24 h at 37°C. The types of cultivated colonies were confirmed with the following methods: Enterobacteriaceae bacteria by the analytical profile index (bio-Merieux Poland Ltd.); Enterococcus spp. by Wellcogen Strep B latex agglutination assay (Oxoid Ltd, UK) and next serotyped to Enterococcus faecalis and Enterococcus faecium with the use of diagnostic disc type EF (IBSS BIOMED JTC, POLAND); and Staphylococcus aureus by Staphaurex® Plus Rapid latex agglutination test (Oxoid Ltd, UK).

The antibacterial activity of Castanea sativa and Syzygium aromaticum water extracts was tested by the Kirby–Bauer disk diffusion test [26] and compared with bacterial antibiotic susceptibility determined with the use of the commercial diffusion disks type MASTDISCS™ (Mast Diagnostica Ltd., Germany) dedicated for antibiotics i.e.: amoxicillin (AMX), amoxicillin with clavulanic acid (AMC), enrofloxacin (ENR), florfenicol (FFC) colistin (Col), gentamicin (GM), trimethoprim with sulfamethoxazole (SXT) and doxycycline (D). The base extracts were diluted with sterile water (Aquapro Injectione, Polpharma) 10–, 20–, 40–, 80–, 160– and 320-fold and 10 ml of each of the solutions was spotted on sterile diagnostic disc (Oxoid Ltd, UK).

All experimental and control discs (in 10 replications) were placed on Oxoid’s Mueller-Hinton II Agar plates (Oxoid Ltd, UK) with bacterial colonies and incubated at 35°C for 24 h.
The antibacterial activity of the tested substance was evaluated based on the diameter of the transparent zone in the medium around the diffusion disc.

Experiment 2. The effect of Castanea sativa and Syzygium aromaticum on broiler chickens rearing in the first week of life

The broiler chicks (n = 2100 chicks) (ROSS 308, Aviagen) were bought from a commercial hatchery (ZWD Wolbrom, Poland). Chicks were randomly divided into three groups (n = 700 chicks per group, female and male mix) and placed in rearing boxes (n = 100 chicks/box; seven boxes per group). The chicks were housed on a wheat straw litter floor, ad libitum water and feed (Starter feed, De Haus) and environmental condition according with broiler line producer [27].

From the second to seventh day of rearing, the chicks were given, for inhibition of post-hatching infection: 1) mixture (one to one) of Centaur clove and horse chestnut extract at a dose of 5 ml/L water (i.e. 200-fold dilution); 10% enrofloxacin (according to the antibiogram, Tab.1 and 2) at a dose of 0.5 ml/L. The control group received pure water. On the seventh day of rearing, all chickens were weighed with an accuracy of one gram and the mortality rate was determined.

Table 1. Susceptibility gram negative bacteria (*Escherichia coli* and *Klebsiella pneumoniae*) on *Castanea sativa* or *Syzygium aromaticum* in comparison to selected antibiotics, i.e., amoxicillin (AMX), amoxicillin with clavulanic acid (AMC), enrofloxacin (ENR), florfenicol (FFC); colistin (Col), gentamicin (GM), trimethoprim with sulfamethoxazole (SXT) and doxycycline (D). The results of antibacterial activity of the tested substance are shown as the diameter of the transparent zone in the medium around the diffusion disc [mm].

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>Antibiotic</th>
<th>Herbs extract</th>
<th>Extract dilution [-fold]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AMX</td>
<td>AMC</td>
<td>ENR</td>
</tr>
<tr>
<td>Escherichia coli (ATCC 25922)</td>
<td>18</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>Escherichia coli (wild – 6 day old chicken)</td>
<td>0</td>
<td>23</td>
<td>29</td>
</tr>
<tr>
<td>Escherichia coli (wild – 23 day old chicken)</td>
<td>0</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Klebsiella pneumoniae (wild – 6 day old chicken)</td>
<td>0</td>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 2. Susceptibility positive bacteria: *Staphylococcus aureus* and *Enterococcus faecalis* on *Castanea sativa* or *Syzygium aromaticum* in comparison to selected antibiotics, i.e., amoxicillin (AMX), amoxicillin with clavulanic acid (AMC), enrofloxacin (ENR), florfenicol (FFC) (Col), gentamicin (GM), trimethoprim with sulfamethoxazole (SXT) and doxycycline (D). The results antibacterial activity of the tested substance are shown as the diameter of the transparent zone in the medium around the diffusion disc [mm].

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>Antibiotic</th>
<th>Herbs extract</th>
<th>Extract dilution [-fold]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AMX</td>
<td>AMC</td>
<td>ENR</td>
</tr>
<tr>
<td>Enterococcus faecalis (ATCC 29212)</td>
<td>18</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Staphylococcus aureus (ATCC 25923)</td>
<td>28</td>
<td>30</td>
<td>25</td>
</tr>
</tbody>
</table>

Table 3. Body weight of chicken broiler Ross 308 (mean ± SD) at 7th day of rearing, which were applied for inhibition of post-hatching infection, by: 1) pure water (control); 2) herbal extract of *Castanea sativa* or *Syzygium aromaticum* (mixture in proportion one to one) at a dose of 5 ml/L water; 3) antibiotic 10% enrofloxacin (according to the antibiogram, Tab. 1 and 2) at a dose of 0.5 ml/L.

<table>
<thead>
<tr>
<th>Repetition</th>
<th>Pure water</th>
<th>Herbal extract</th>
<th>Antibiotic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N chicken body weight [g]</td>
<td>N chicken body weight [g]</td>
<td>N chicken body weight [g]</td>
</tr>
<tr>
<td>1</td>
<td>97 142.0 ± 11.30</td>
<td>98 141.1 ± 28.16</td>
<td>100 145.4 ± 28.01</td>
</tr>
<tr>
<td>2</td>
<td>93 145.5 ± 18.15 A</td>
<td>98 175.1 ± 20.22 B</td>
<td>99 169.1 ± 21.94 B</td>
</tr>
<tr>
<td>3</td>
<td>98 145.0 ± 21.27 A</td>
<td>98 155.5 ± 20.09 B</td>
<td>100 176.1 ± 22.43 C</td>
</tr>
<tr>
<td>4</td>
<td>95 146.0 ± 18.20 A</td>
<td>98 150.0 ± 21.31 A</td>
<td>99 154.9 ± 25.18 B</td>
</tr>
<tr>
<td>5</td>
<td>98 145.5 ± 19.04 A</td>
<td>97 154.6 ± 15.85 B</td>
<td>100 166.2 ± 23.99 C</td>
</tr>
<tr>
<td>6</td>
<td>96 143.2 ± 22.14 A</td>
<td>97 167.7 ± 15.30 B</td>
<td>98 171.1 ± 18.52 B</td>
</tr>
<tr>
<td>7</td>
<td>96 141.8 ± 18.83 A</td>
<td>98 157.8 ± 18.69 B</td>
<td>100 147.7 ± 15.97 A</td>
</tr>
<tr>
<td>Total</td>
<td>673 144.1 ± 18.69 A</td>
<td>684 157.4 ± 22.76 B</td>
<td>696 161.5 ± 25.16 C</td>
</tr>
</tbody>
</table>

ABC – values marked with the various capital letters differ highly significantly (P ≤ 0.01)

Table 4. Mortality rate of chicken broiler Ross 308 (mean ± SD) at 7th day of rearing, which were applied for inhibition of post-hatching infection, by: 1) pure water (control); 2) herbal extract of *Castanea sativa* or *Syzygium aromaticum* (mixture in proportion one to one) at a dose of 5 ml/L water; 3) antibiotic 10% enrofloxacin (according to the antibiogram, Tab. 1 and 2) at a dose of 0.5 ml/L.

<table>
<thead>
<tr>
<th>Repetition</th>
<th>Control group (pure water)</th>
<th>Herbal extract</th>
<th>Enrofloxacin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Group size</td>
<td>Dead chicken</td>
<td>Group size</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>N</td>
<td>[%]</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>3</td>
<td>3.00</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>7</td>
<td>7.00</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>2</td>
<td>2.00</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>5</td>
<td>5.00</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>2</td>
<td>2.00</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>4</td>
<td>4.00</td>
</tr>
<tr>
<td>7</td>
<td>100</td>
<td>4</td>
<td>4.00</td>
</tr>
<tr>
<td>Total</td>
<td>700</td>
<td>27</td>
<td>3.86</td>
</tr>
</tbody>
</table>

ABC – values marked with the various capital letters differ highly significantly (P ≤ 0.01)
babc – values marked with the various small letters differ highly significantly (P ≤ 0.01)

Statistical analysis

Statistical analysis was performed by One Way ANOVA and Tukey post hoc test, using a program SigmaStat 3.5. (Systat Software, Inc USA)

Results and Discussion

The results of the microbiological analyses showed that the *Castanea sativa* and *Syzygium aromaticum* extracts had a slighter antibacterial activity in comparison to antibiotics. The diameter of zone inhibition of the culture’s growth of gram-negative bacteria (i.e. *Escherichia coli* and *Klebsiella pneumonia*, table 1) and gram-positive bacteria (i.e. *Staphylococcus aureus* and *Enterococcus faecalis*, table 2) was 6–13 mm for these extracts in comparison to 15–30 mm for antibiotics. However, some bacterial strains presented full resistance to the selected antibiotics, e.g., wild strains of *Enterobacteriaceae* to amoxicillin (Tab. 1) or *Staphylococcus aureus* and *Enterococcus faecalis* to florfenicol, colistin, and doxycycline (Tab. 2)
Diverse antibacterial influence of clove oil or chestnut extract on *Escherichia coli* was obtained by many authors [19, 28–30]. The observed resistance of Gram-negative bacteria to the action of tannins may be related to the presence of liposaccharide compounds in the cell walls [31–32]. However, gram positive bacteria seem more sensitive to the action of herbal extracts. The cell walls of this bacteria type consists mostly of peptidoglycans, which allow hydrophobic molecules to penetrate it easily. Therefore, the phenolic compounds contained in herbal extracts can interfere with the activity of enzymes involved in energy production at lower concentrations, or lead to protein denaturation at higher concentrations [33].

The use of herbal extracts in the mixture of *Castanea sativa* and *Syzygium aromaticum* in drinking water during the first week of chick rearing allowed to achieve chicken body weight higher by 13.3 g (9.2%; *P* ≤ 0.008) compared to the control group (but lower 4.1 g (2.6%; *P* ≤ 0.005) than antibiotic treated ones (Tab. 3). Similar results were obtained by Schiavone [24] for horse chestnut extract and by Hajati et al. [34] for clove. The mechanisms by which antimicrobial substances improve chicken growth are not fully understood. They are probably influenced by the reduction of: pathogenic bacteria present in the intestine, e.g. *Escherichia coli* and *Clostridium perfingers*, subclinical infections and toxins. Moreover, herbal extracts can enrich a feed aroma and taste, which is attractive to animals and strengthens the appetite. The exogenous enzymes contained in the extracts improve the digestibility of nutrients. The active ingredients of the extracts stabilize the gastrointestinal microflora through the growth of probiotic bacteria, e.g., lactic acid bacteria, and consequently affects the intestinal environment and the development of the immune system [7, 35–36]. Moreover, they influence the increased secretion of mucus by the intestinal epithelium, hindering the adhesion of pathogens [10, 35, 37].

It our study, herbal extracts administrated to drinking water significantly reduced, by 41% (1.57 pp), chicken mortality rate in the first week of rearing compared to the control group (*P* ≤ 0.034). However, this index was still significantly higher (four-fold) than in the groups treated with antibiotics (*P* ≤ 0.009). In both cases, the reduction of chicken death cases was associated with the decrease of after-hatching infections, the main cause of which are pathogenic strains of *Escherichia coli* [38]. As could be expected, the antibiotic enrofloxacin, used in accordance with the antibiotic profile, successfully inhibited the development of pathogens. On the other hand, the positive effect of herbal extracts on the survival of chickens was related to the natural stabilization of the bacterial flora and the increase of general immunity [39], which was described above. Similar in *vivo* reduction of post-hatching infections caused by *Escherichia coli* with the use of *Castanea sativa* extract was confirmed by Bole-Hribovsek et al. [21].

Conclusions

In summary, the use of herbal extracts as nutritional supplements for poultry seems to have a positive effect on weight gain of young birds, and to some extent on reducing mortality in the first week of rearing. Further research should be continued to describe their effect on the gastrointestinal microflora and the pharmacokinetics and pharmacodynamics of active compounds in the body of birds, thus limiting the use of antibiotics.

Acknowledgements

This research was supported by the Ministry of Science and Higher Education of the Republic of Poland (Subject no 215-DZ06, University of Agriculture in Krakow). Acknowledgments to Ms. Katarzyna Cullen for professional British English proof-reading of the manuscript.

References

6. Nhung NT, Chansiripornchai N, Carrique-Mas JJ.

